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Abstract—An efficient finite-difference time-domain method
based on the locally one-dimensional scheme (LOD-FDTD) is de-
veloped for the analysis of periodic structures. The Sherman–Mor-
rison formula is used to efficiently solve the cyclic matrix problem
resulting from the application of the periodic boundary condition
to the implicit LOD scheme. Through the analysis of a photonic
band-gap (PBG) structure, numerical results are found to be
identical to those of the alternating-direction implicit (ADI) coun-
terpart. The use of dispersion control parameters enables us to
use a large time-step size. As a result, the computational time is
reduced to ��� of that of the traditional explicit FDTD while
maintaining acceptable numerical results.

Index Terms—Alternating-direction implicit (ADI) scheme, fi-
nite-difference time-domain (FDTD), periodic structure.

I. INTRODUCTION

F OR the efficient analysis of periodic structures, only a
single-unit cell is treated using periodic boundary condi-

tions. One of the frequently used numerical techniques for these
structures is the periodic finite-difference time-domain (FDTD)
method [1], [2]. Note that as in the conventional FDTD [3],
[4], the periodic FDTD suffers from the Courant–Friedich–Levy
(CFL) condition with respect to the time-step size ( ). To re-
move this, Wang et al. [5] have applied the alternating-direction
implicit (ADI) scheme [6], [7] to the periodic FDTD, in which
the cyclic matrix problem resulting from the implicit scheme
is solved using the Sherman–Morrison formula [8]. The peri-
odic ADI-FDTD has also been extended to the analysis of those
structures at oblique incidence [9].

As an alternative to the ADI-FDTD, we have proposed the
unconditionally stable locally one-dimensional (LOD) FDTD
[10], [11]. Nascimento et al. [12], [13] have also independently
formulated the LOD-FDTD. The advantage of the LOD-FDTD
is that the algorithm is quite simple compared to the ADI-FDTD,
maintaining comparable accuracy. While the implicit schemes
allow the use of a large beyond that is the upper limit
determined with the CFL condition, the numerical dispersion
error also increases, resulting in accuracy degradation. To re-
duce the error, Li et al. [14] have introduced the dispersion con-
trol parameters [15], [16] into the LOD-FDTD. Note, however,
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that this improved LOD-FDTD has not been applied to practical
problems so far.

The purpose of this letter is to develop an LOD-FDTD for
the efficient analysis of periodic structures. To reduce the dis-
persion error caused by a large , we introduce the dispersion
control parameters [14] to the periodic LOD-FDTD. After
presenting the formulation, we analyze a periodic photonic
band-gap (PBG) structure [17]. Numerical results are found
to be identical to the ADI counterparts, even though the LOD
algorithm is simpler than the ADI algorithm. With the control
parameters, the numerical results of the periodic LOD-FDTD
for fairly compare with those of the traditional explicit
periodic FDTD. As a result, the computational time is reduced
to of that of the explicit FDTD.

II. FORMULATION

Maxwell’s equations for the two-dimensional (2-D) TE case
are expressed as

(1)

where and

in which and represent permittivity and permeability, respec-
tively. and are the dispersion control parameters in the -
and -directions, respectively [14]–[16].

To remove the CFL condition, we apply the Crank–Nicolson
scheme to (1) and have

(2)
where denotes the unit matrix. Application of the LOD
scheme [10], [12] to (2) gives

(3)

for the first step and

(4)
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Fig. 1. Field orientation in a unit cell. The periodic boundary condition is im-
posed when (11) is calculated at � � � and � � �.

for the second step, where is the intermediate field. We fi-
nally derive the following basic equations of the improved LOD-
FDTD with the dispersion control parameters [14]:

(5)

(6)

(7)

for the first step and

(8)

(9)

(10)

for the second step. The control parameters and used in
the above formulation contribute to a reduction of the numer-
ical dispersion error. The above equations reduce to those of the
conventional LOD-FDTD for . The implementation
of the LOD-FDTD is simple due to less arithmetic operations,
contributing to the computational time reduction by 10%–20%
relative to the ADI-FDTD [10], [11].

Since the infinite periodicity assumed in this letter lies only in
the -direction, we impose the periodic boundary condition on
the two vertical edges ( and ) of the unit cell as shown
in Fig. 1. This requires the implementation of the boundary con-
dition only in the first step where the derivatives are treated,
as discussed below.

In the first step, substituting (7) into (6) gives the following
equation to be solved implicitly:

(11)

When the edge at is treated, we apply the periodic
boundary conditions (see Fig. 1) as

to (11). Similarly, at , the condition

is used for (11). As a result, we obtain the following matrix:

(12)

where is the known components of (11), is the unknown
components , and

...
. . .

. . .
. . .

. . .
...

in which . Note that is a cyclic
matrix not solvable with the Thomas algorithm for a tridiagonal
system of linear equations. To efficiently solve (12) with the
Thomas algorithm, we take the following approach.

can be rewritten as

(13)

where

...
. . .

. . .
. . .

. . .
...

and

Here, we resort to the Sherman–Morrison formula [5], [8], [9],
leading to

(14)

For the solution of with (14), the following two auxiliary equa-
tions are introduced:

(15)

(16)

Once and are available, we obtain in (12) as

(17)
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Fig. 2. 2-D PBG structure. Only a single-unit cell is analyzed.

where

Fortunately, (15) and (16) are tridiagonal systems of linear equa-
tions, to which the Thomas algorithm is applicable. Since is
constant, of (16) is solved once and stored throughout the
analysis.

The control parameters are derived from the dispersion char-
acteristic equation [14]. Here, we present the parameters with a
material refractive index ( ) being considered as

(18)

where , , is the speed of light in a
vacuum, and is the free-space wavenumber (note
that is not taken into account in [14] since the free space is
considered). and are derived with and , respec-
tively, when is available (for a waveguide problem, may be
chosen to be an effective index of its propagating mode). For
sufficiently small and , is approximated to , so the
above expressions are simplified to

(19)

Notice that knowledge regarding is not required in (19). In
other words, the control parameters can be used without paying
attention to the background index, provided that spatial sam-
pling widths are sufficiently small. In Section III, we will ex-
amine numerical results with both (18) and (19).

III. NUMERICAL RESULTS

To investigate the periodic LOD-FDTD in comparison with
the explicit periodic FDTD, we analyze a 2-D PBG structure
treated in [17] at normal incidence. Fig. 2 shows the PBG struc-
ture to be analyzed, in which the radius of the dielectric rod is

mm and its dielectric constant is (surrounded
by air). The rods are arranged in a square lattice such that the
center-to-center separation distance mm is equal to the
unit cell width. A Gaussian pulse plane wave is launched from
the incidence plane (see Fig. 2). The frequency characteristics of
the transmission are calculated using the time-domain response
in the observation plane. The rod is discretized by 16 cells across

Fig. 3. Transmission versus frequency. (a) LOD-FDTD and (b) ADI-FDTD.
The dispersion control parameters are � � � � � (conventional LOD- and
ADI-FDTDs). LOD and ADI results for �� are almost superimposed on
the result of the explicit FDTD.

its diameter, leading to mm. The number of
sampling points is , including 20-cell
perfectly matched layer (PML) regions [18] for both input and
output ports.

Fig. 3(a) shows the transmission obtained from the LOD-
FDTD with . For reference, the transmission from the
explicit FDTD is also included with ns (which
is slightly smaller than the actual upper limit for stability). It is
seen that the transmission of the LOD-FDTD with a large
slightly deviates from that of the explicit FDTD in the high-fre-
quency region, which stems from the numerical dispersion error.
It is noteworthy that the LOD results are identical to the ADI
results shown in Fig. 3(b), even though the former is first-order
accurate in time while the latter is second-order accurate. The
noncommutativity error of the LOD-FDTD is negligible for the
problem treated here.

To achieve a more accurate result, we employ the improved
LOD-FDTD with the dispersion control parameters being se-
lected. For example, we obtain from (18)
with mm, , at 15 GHz,
and derived from the ratio between the rod and air areas in a
single cell. On the other hand, (19) yields ,
which are almost the same as the above. Fortunately, the inclu-
sion of the control parameters imposes no computational burden
[14]. Fig. 4 depicts the transmission with (18). The results are
found to be improved, in which the transmission for
is almost superimposed on the explicit counterpart. In addition,
the result for is acceptable, whereas only a slight devi-
ation is seen in the high-frequency region. Interestingly, the use
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Fig. 4. Transmission obtained from the improved LOD-FDTD with the disper-
sion control parameters.

of (19) reproduces almost the same numerical results as those in
Fig. 4, although not explicitly shown. This means that no knowl-
edge regarding is required, provided that the spatial sampling
widths are reasonably small.

Finally, we mention the computational efficiency of the pe-
riodic LOD-FDTD. Note that the relative efficiency to the con-
ventional FDTD depends on the computer used and the compu-
tational code developed. In our Fortran code, the computational
time of the LOD-FDTD for is comparable to that
of the explicit FDTD when a PC with a Core(TM)2 Quad pro-
cessor (3.0 GHz) is used. The computational time is reduced by

% and 50% for and , respectively, com-
pared to the explicit counterpart, demonstrating an efficiency
improvement of the LOD-FDTD.

IV. CONCLUSION

An efficient numerical technique for periodic structures has
been developed on the basis of the LOD-FDTD method. Anal-
ysis of a PBG structure reveals that the results of the periodic
LOD-FDTD are identical to the ADI counterparts. The use of
the dispersion control parameters contributes to an accuracy im-
provement particularly in the high-frequency region, in which
no knowledge of the material refractive index is required. With
acceptable results, the computational time for is re-
duced to of that of the explicit FDTD. Extension to pe-
riodic structures at oblique incidence [9], [17] is left for a future
study.
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